无线网络的第五生成(5G)将更加自适应和异质。可重新配置的智能表面技术使5G能够在多仪波形上工作。但是,在这样的动态网络中,特定调制类型的识别至关重要。我们提出了基于人工智能的RIS辅助数字分类方法。我们培训卷积神经网络以对数字调制进行分类。所提出的方法可以直接在接收的信号上学习并学习特征,而无需提取功能。介绍和分析了卷积神经网络学到的功能。此外,还研究了在特定SNR范围内接收信号的强大功能。发现所提出的分类方法的准确性很显着,尤其是对于低水平的SNR。
translated by 谷歌翻译
贝叶斯优化(BO)是机器学习算法的封锁率优化(HPO)广泛流行的方法。在其核心,Bo迭代地评估有前途的配置,直到用户定义的预算(例如挂钟时间或迭代次数)耗尽。虽然在调整大量后的最终性能取决于提供的预算,但很难提前预先指定最佳价值。在这项工作中,我们为BO提出了一种有效而直观的终止标准,如果它足够接近全球Optima,则会自动停止程序。在广泛的实际HPO问题中,我们表明,与来自文献的现有基线相比,我们的终止标准实现了更好的测试性能,例如在改进概率下降到固定阈值以下时停止。我们还提供了证据表明,与我们的方法相比,这些基线对其自身的Quand参数的选择非常敏感。此外,我们发现在HPO的背景下可能会出现过度装备,这可以在文献中可以说是一个忽视的问题,并表明我们的终止标准减轻了小型和大型数据集的这种现象。
translated by 谷歌翻译
Generalisation to unseen contexts remains a challenge for embodied navigation agents. In the context of semantic audio-visual navigation (SAVi) tasks, the notion of generalisation should include both generalising to unseen indoor visual scenes as well as generalising to unheard sounding objects. However, previous SAVi task definitions do not include evaluation conditions on truly novel sounding objects, resorting instead to evaluating agents on unheard sound clips of known objects; meanwhile, previous SAVi methods do not include explicit mechanisms for incorporating domain knowledge about object and region semantics. These weaknesses limit the development and assessment of models' abilities to generalise their learned experience. In this work, we introduce the use of knowledge-driven scene priors in the semantic audio-visual embodied navigation task: we combine semantic information from our novel knowledge graph that encodes object-region relations, spatial knowledge from dual Graph Encoder Networks, and background knowledge from a series of pre-training tasks -- all within a reinforcement learning framework for audio-visual navigation. We also define a new audio-visual navigation sub-task, where agents are evaluated on novel sounding objects, as opposed to unheard clips of known objects. We show improvements over strong baselines in generalisation to unseen regions and novel sounding objects, within the Habitat-Matterport3D simulation environment, under the SoundSpaces task.
translated by 谷歌翻译
This paper analyzes $\ell_1$ regularized linear regression under the challenging scenario of having only adversarially corrupted data for training. We use the primal-dual witness paradigm to provide provable performance guarantees for the support of the estimated regression parameter vector to match the actual parameter. Our theoretical analysis shows the counter-intuitive result that an adversary can influence sample complexity by corrupting the irrelevant features, i.e., those corresponding to zero coefficients of the regression parameter vector, which, consequently, do not affect the dependent variable. As any adversarially robust algorithm has its limitations, our theoretical analysis identifies the regimes under which the learning algorithm and adversary can dominate over each other. It helps us to analyze these fundamental limits and address critical scientific questions of which parameters (like mutual incoherence, the maximum and minimum eigenvalue of the covariance matrix, and the budget of adversarial perturbation) play a role in the high or low probability of success of the LASSO algorithm. Also, the derived sample complexity is logarithmic with respect to the size of the regression parameter vector, and our theoretical claims are validated by empirical analysis on synthetic and real-world datasets.
translated by 谷歌翻译
SNCF, the French public train company, is experimenting to develop new types of transportation services by tackling vehicle routing problems. While many deep learning models have been used to tackle efficiently vehicle routing problems, it is difficult to take into account time related constraints. In this paper, we solve the Capacitated Vehicle Routing Problem with Time Windows (CVRPTW) and the Capacitated Pickup and Delivery Problem with Time Windows (CPDPTW) with a constructive iterative Deep Learning algorithm. We use an Attention Encoder-Decoder structure and design a novel insertion heuristic for the feasibility check of the CPDPTW. Our models yields results that are better than best known learning solutions on the CVRPTW. We show the feasibility of deep learning techniques for solving the CPDPTW but witness the limitations of our iterative approach in terms of computational complexity.
translated by 谷歌翻译
Bayesian methods, distributionally robust optimization methods, and regularization methods are three pillars of trustworthy machine learning hedging against distributional uncertainty, e.g., the uncertainty of an empirical distribution compared to the true underlying distribution. This paper investigates the connections among the three frameworks and, in particular, explores why these frameworks tend to have smaller generalization errors. Specifically, first, we suggest a quantitative definition for "distributional robustness", propose the concept of "robustness measure", and formalize several philosophical concepts in distributionally robust optimization. Second, we show that Bayesian methods are distributionally robust in the probably approximately correct (PAC) sense; In addition, by constructing a Dirichlet-process-like prior in Bayesian nonparametrics, it can be proven that any regularized empirical risk minimization method is equivalent to a Bayesian method. Third, we show that generalization errors of machine learning models can be characterized using the distributional uncertainty of the nominal distribution and the robustness measures of these machine learning models, which is a new perspective to bound generalization errors, and therefore, explain the reason why distributionally robust machine learning models, Bayesian models, and regularization models tend to have smaller generalization errors.
translated by 谷歌翻译
The feasibility of collecting a large amount of expert demonstrations has inspired growing research interests in learning-to-drive settings, where models learn by imitating the driving behaviour from experts. However, exclusively relying on imitation can limit agents' generalisability to novel scenarios that are outside the support of the training data. In this paper, we address this challenge by factorising the driving task, based on the intuition that modular architectures are more generalisable and more robust to changes in the environment compared to monolithic, end-to-end frameworks. Specifically, we draw inspiration from the trajectory forecasting community and reformulate the learning-to-drive task as obstacle-aware perception and grounding, distribution-aware goal prediction, and model-based planning. Firstly, we train the obstacle-aware perception module to extract salient representation of the visual context. Then, we learn a multi-modal goal distribution by performing conditional density-estimation using normalising flow. Finally, we ground candidate trajectory predictions road geometry, and plan the actions based on on vehicle dynamics. Under the CARLA simulator, we report state-of-the-art results on the CARNOVEL benchmark.
translated by 谷歌翻译
Echo State Networks (ESN) are a type of Recurrent Neural Networks that yields promising results in representing time series and nonlinear dynamic systems. Although they are equipped with a very efficient training procedure, Reservoir Computing strategies, such as the ESN, require the use of high order networks, i.e. large number of layers, resulting in number of states that is magnitudes higher than the number of model inputs and outputs. This not only makes the computation of a time step more costly, but also may pose robustness issues when applying ESNs to problems such as Model Predictive Control (MPC) and other optimal control problems. One such way to circumvent this is through Model Order Reduction strategies such as the Proper Orthogonal Decomposition (POD) and its variants (POD-DEIM), whereby we find an equivalent lower order representation to an already trained high dimension ESN. The objective of this work is to investigate and analyze the performance of POD methods in Echo State Networks, evaluating their effectiveness. To this end, we evaluate the Memory Capacity (MC) of the POD-reduced network in comparison to the original (full order) ENS. We also perform experiments on two different numerical case studies: a NARMA10 difference equation and an oil platform containing two wells and one riser. The results show that there is little loss of performance comparing the original ESN to a POD-reduced counterpart, and also that the performance of a POD-reduced ESN tend to be superior to a normal ESN of the same size. Also we attain speedups of around $80\%$ in comparison to the original ESN.
translated by 谷歌翻译
Transformers have attained superior performance in natural language processing and computer vision. Their self-attention and feedforward layers are overparameterized, limiting inference speed and energy efficiency. Tensor decomposition is a promising technique to reduce parameter redundancy by leveraging tensor algebraic properties to express the parameters in a factorized form. Prior efforts used manual or heuristic factorization settings without hardware-aware customization, resulting in poor hardware efficiencies and large performance degradation. In this work, we propose a hardware-aware tensor decomposition framework, dubbed HEAT, that enables efficient exploration of the exponential space of possible decompositions and automates the choice of tensorization shape and decomposition rank with hardware-aware co-optimization. We jointly investigate tensor contraction path optimizations and a fused Einsum mapping strategy to bridge the gap between theoretical benefits and real hardware efficiency improvement. Our two-stage knowledge distillation flow resolves the trainability bottleneck and thus significantly boosts the final accuracy of factorized Transformers. Overall, we experimentally show that our hardware-aware factorized BERT variants reduce the energy-delay product by 5.7x with less than 1.1% accuracy loss and achieve a better efficiency-accuracy Pareto frontier than hand-tuned and heuristic baselines.
translated by 谷歌翻译
Reinforcement learning (RL) is a promising solution for autonomous vehicles to deal with complex and uncertain traffic environments. The RL training process is however expensive, unsafe, and time consuming. Algorithms are often developed first in simulation and then transferred to the real world, leading to a common sim2real challenge that performance decreases when the domain changes. In this paper, we propose a transfer learning process to minimize the gap by exploiting digital twin technology, relying on a systematic and simultaneous combination of virtual and real world data coming from vehicle dynamics and traffic scenarios. The model and testing environment are evolved from model, hardware to vehicle in the loop and proving ground testing stages, similar to standard development cycle in automotive industry. In particular, we also integrate other transfer learning techniques such as domain randomization and adaptation in each stage. The simulation and real data are gradually incorporated to accelerate and make the transfer learning process more robust. The proposed RL methodology is applied to develop a path following steering controller for an autonomous electric vehicle. After learning and deploying the real-time RL control policy on the vehicle, we obtained satisfactory and safe control performance already from the first deployment, demonstrating the advantages of the proposed digital twin based learning process.
translated by 谷歌翻译